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12 Limiting Theorems

12.1 Law of Large Numbers (LLN)

Definition 12.1. Let X1, X2, . . . , Xn be a collection of random
variables with a common mean E [Xi] = m for all i. In practice,
since we do not know m, we use the numerical average, or sample
mean,

Mn =
1

n

n∑
i=1

Xi

in place of the true, but unknown value, m.

Q: Can this procedure of using Mn as an estimate of m be
justified in some sense?

A: This can be done via the law of large number.

12.2. The law of large number basically says that if you have a
sequence of i.i.d random variables X1, X2, . . .. Then the sample
means Mn = 1

n

∑n
i=1Xi will converge to the actual mean as n →

∞.

12.3. LLN is easy to see via the property of variance. Note that

E [Mn] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

EXi = m

and

Var[Mn] = Var

[
1

n

n∑
i=1

Xi

]
=

1

n2

n∑
i=1

VarXi =
1

n
σ2, (33)
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Remarks:

(a) For (33) to hold, it is sufficient to have uncorrelated Xi’s.

(b) From (33), we also have

σMn
=

1√
n
σ. (34)

In words, “when uncorrelated (or independent) random vari-
ables each having the same distribution are averaged together,
the standard deviation is reduced according to the square root
law.” [21, p 142].

Exercise 12.4 (F2011). Consider i.i.d. random variablesX1, X2, . . . , X10.
Define the sample mean M by

M =
1

10

10∑
k=1

Xk.

Let

V1 =
1

10

10∑
k=1

(Xk − E [Xk])
2.

and

V2 =
1

10

10∑
j=1

(Xj −M)2.

Suppose E [Xk] = 1 and Var[Xk] = 2.

(a) Find E [M ].

(b) Find Var[M ].

(c) Find E [V1].

(d) Find E [V2].
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12.2 Central Limit Theorem (CLT)

In practice, there are many random variables that arise as a sum
of many other random variables. In this section, we consider the
sum

Sn =
n∑
i=1

Xi (35)

where theXi are i.i.d. with common meanm and common variance
σ2.

• Note that when we talk about Xi being i.i.d., the definition
is that they are independent and identically distributed. It
is then convenient to talk about a random variable X which
shares the same distribution (pdf/pmf) with these Xi. This
allow us to write

Xi
i.i.d.∼ X, (36)

which is much more compact than saying that the Xi are
i.i.d. with the same distribution (pdf/pmf) as X. Moreover,
we can also use EX and σ2

X for the common expected value
and variance of the Xi.

Q: How does Sn behave?

In the previous section, we consider the sample mean of identi-
cally distributed random variables. More specifically, we consider
the random variable Mn = 1

nSn. We found that Mn will converge
to m as n increases to ∞. Here, we don’t want to rescale the sum
Sn by the factor 1

n .

12.5 (Approximation of densities and pmfs using the CLT). The
actual statement of the CLT is a bit difficult to state. So, we first
give you the interpretation/insight from CLT which is very easy
to remember and use:

For n large enough, we can approximate Sn by a Gaus-
sian random variable with the same mean and variance as
Sn.
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Note that the mean and variance of Sn is nm and nσ2, re-
spectively. Hence, for n large enough we can approximate Sn by
N
(
nm, nσ2

)
. In particular,

(a) FSn(s) ≈ Φ
(
s−nm
σ
√
n

)
.

(b) If the Xi are continuous random variable, then

fSn(s) ≈
1√

2πσ
√
n
e−

1
2(

x−nm
σ
√
n )

2

.

(c) If the Xi are integer-valued, then

P [Sn = k] = P

[
k − 1

2
< Sn ≤ k +

1

2

]
≈ 1√

2πσ
√
n
e−

1
2(

k−nm
σ
√
n )

2

.

[9, eq (5.14), p. 213].

The approximation is best for k near nm [9, p. 211].

Example 12.6. Approximation for Binomial Distribution: For
X ∼ B(n, p), when n is large, binomial distribution becomes diffi-
cult to compute directly because of the need to calculate factorial
terms.

(a) When p is not close to either 0 or 1 so that the variance is
also large, we can use CLT to approxmiate

P [X = k] ≈ 1√
2πVarX

e−
(k−EX)2

2 VarX (37)

=
1√

2πnp (1− p)
e−

(k−np)2
2np(1−p) . (38)

This is called Laplace approximation to the Binomial distri-
bution [25, p. 282].

(b) When p is small, the binomial distribution can be approxi-
mated by P(np) as discussed in 8.46.

(c) If p is very close to 1, then n−X will behave approximately
Poisson.
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• Normal Approximation to Poisson Distribution with large λ: 

Let ( )~X λP . X can be though of as a sum of  i.i.d. ( )0~iX λP , i.e., 
1

n

i
i

X X
=

= ∑ , where 

0nλ λ= . Hence X  is approximately normal ( ),λ λN  for λ  large. 

Some says that the normal approximation is good when 5λ > . 

 
The above figure compare 1) Poisson when x is integer, 2) Gaussian, 3) Gamma, 4) 
Binomial. 

• If :g + →Z R  is any bounded function and ( )~ λΛ P , then ( ) ( )1 0g gλ Λ + − Λ Λ =⎡ ⎤⎣ ⎦E . 
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Any function :f + →Z R  for which ( ) 0f Λ =⎡ ⎤⎣ ⎦E  can be expressed in the form 

( ) ( ) ( )1f j g j jg jλ= + −  for a bounded function g. 

Thus, conversely, if ( ) ( )1 0g gλ Λ + − Λ Λ =⎡ ⎤⎣ ⎦E  for all bounded  g, then Λ  has the Poisson 

distribution ( )λP . 

• Poisson distribution can be obtained as a limit from negative binomial distributions. 
(Thus, the negative binomial distribution with parameters r and p can be approximated by the 

Poisson distribution with parameter rq
p

λ =  (maen-matching), provided that p is 

“sufficiently” close to 1 and r is “sufficiently” large. 
• Let X  be Poisson with mean λ . Suppose, that the mean λ  is chosen in accord with a 

probability distribution ( )F λΛ . Hence,  

p 0.05:= n 100:= λ 5:=

0 5 10
0

0.05
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Γ x 1+( )
⋅

1

2 π⋅ λ
e

1−
2 λ⋅

x λ−( )2

⋅

e x− xλ 1−⋅
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x
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Figure 30: Gaussian approximation to Binomial, Poisson distribution, and
Gamma distribution.

Exercise 12.7 (F2011). Continue from Exercise 6.59. The stronger
person (Kakashi) should win the competition if n is very large. (By
the law of large numbers, the proportion of fights that Kakashi wins
should be close to 55%.) However, because the results are random
and n can not be very large, we can not guarantee that Kakashi
will win. However, it may be good enough if the probability that
Kakashi wins the competition is greater than 0.85.

We want to find the minimal value of n such that the probability
that Kakashi wins the competition is greater than 0.85.

Let N be the number of fights that Kakashi wins among the n
fights. Then, we need

P
[
N >

n

2

]
≥ 0.85. (39)

Use the central limit theorem and Table 3.1 or Table 3.2 from
[Yates and Goodman] to approximate the minimal value of n such
that (39) is satisfied.
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